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Abstract

We survey the advances in the p- and the h-p versions of the finite

element method. An up-to-date list of references related to these methods is

provided.
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1. Introduction and brief history.

The origins of the finite element method (FEM), like those of the

spectral method, may be traced back a long time. If we understand the FEM as

the application of variational principles and approximation by piecewise

smooth functions, then this Idea was already used by Leibnitz in 1696 (in

one dimension with plecewise linear functions). In two dimensions. Schellbach

)-±l used triangulation and plecewise linear functions-see--&1e*-"- Never-

theless, the modern FEM era starts with tOw paper 111 which demonstrated the

potential for the use of the computer. Since then, more than 30,000 papers

have appearedse [4- s5], [6]).These papers are generally based on the

h-version of the FEM, where the accuracy of the approximate solution is

achieved by ref in~ing the mesh while using~ '4 d polynomials on the mesh. (z2

The spectral method, when understood to be the. use of variational

principles (or other methods, such as collocation), combined with the use of

polynomials of high degree, was already known to Ritz. A method of this type

was developed (among others) by Galerkin [7] and was discussed in detail in

[8], for eg.. A number of further developments of this method, attributed to

S.G. Michlin, may be found in his many papers and books. For example, in [9]

he discussed principles for the selection of basis functions and outlined a

program (based on polynomial approximation) for the Soviet computer M-20. For

various theoretical aspects we refer to the important paper [10].

Both methods mentioned were found to have their strengths and weaknesses.

The FEM provided considerable flexibility and was well suited for computer

implementation. The spectral method offered high rates of convergence when

the solution was smooth.

In the 1970s, B.A. Szabo, recognizing these aspects, suggested and

implemented a combination of the two approaches to utilize the advantages of

each. Today, this combination is called the p- and the h-p version of the
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finite element method. If the mesh is fixed and the accuracy of the solution

is achieved only by increasing the degree of the elements, we obtain the

D-version of the FEM. (If the domain is a sc-uare or triangle, and is under-

stood to be one element, then the p-version is identical to the Ritz method

described, for example, In [8]). If we simultaneously refine the mesh and

increase the degrees of elements uniformly or selectively, we obtain the

h-p version.

The first theoretical paper addressing the p-version was (11] and the h-p

version [12]. Since Szabo's original work, significant progress has been made

for these methods in terms of theory, implementatioD and engineering applica-

tions. Some of these achievements are addressed in this paper.

The spectral-, method has been applied extensively in the last 15 years to

problems in fluid mechanics. Recently, there has been interest shown In using

this method over partitioned domains (rather than a single one, see for eg.

[13]). In this context, the spectral method over a partitioned domain is very

similar to the h-p version, though the emphasis of the two methods is

different - the h-p version of the FEM concentrating on the special needs of

structural mechanics analysis, while the spectral method being specialized

more for fluid mechanics.

There are many programs based on the h-version of the FEM, some major

commercial ones being MCNASTRAN, ADINA, ANSYS and others. There are only two

commercial programs based on the p- and h-p version, FIESTA and PROBE, in

addition to a large research program called STRIPE. Other commercial programs

based on the p-version are being developed at various places and will be on

the market in the near future. The authors of this paper have experience with

PROBE and references to it (rather than any alternative) are for convenience

only.
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The h-p version of the finite element method has various features which

are reflected in the implementation and architecture of the program and are

different from the h-version. Recent advances in computer hardware bring to

the forefront the problem of reliability of computations and the repercussions

of the rapidly changing ratio between computer and human costs. The h-p

version offers various essentially new possibilities which the h-version does

not. As examples, we mention the (a-posteriori) assessment of the errors of

the FEM calculations, new possibilities in the modeling of plates and shells

(with models of Reissner-Mindlin type being naturally created) and inherent

parallelization. In addition, the h-p version shows remarkable robustness,

Qfor eg. with respect to locking phenomena.

_In this paper we("presenq/ survey of the state of the art of the p and

h-p versions. The emphasis is on the theoretical aspects related to their use

in approximating elliptic equations stemming from structural mechanics. )

2. The model problem.

Problems in structural mechanics and the mechanics of solids are

typically characterized by elliptic partial differential equations with

piecewise analytic data, pertaining to the boundary, boundary conditions,

coefficients and right hand side. Consequently, one can expect special

features in the solution which should be somehow exploited by the numerical

method used. In this section, we mention some typical available results. For

simplicity and brevity, we restrict our discussion to the two dimensional

case.

Let 0 c R2 j - 1,2,-".,M be simply connected domains with boundaries

Ma = r~ U fJ). f(J) are agjyjjc simple arcs which we call edges,
i-I

while the ends A(j ) A 0 ) of the edges are called vertices. If m 3,
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respectively mj = 4, we call 0 1 a curviiLnear- trianle, respectively

quadrilateral. Otherwise it will be a curvilinear polygon. We will assume

that n j n is either empty, is a common vertex, or is a common edge. Let
ii M

C1 be the interior of U 0 and assume that 0 is a domain. By rA we
J=1

denote the boundary of 0. The edges r (J) not belonging to will be

called interface edues.

We now consider a model problem for second order scalar elliptic

differential equations written in the weak form. Let

Ou Ov dXld
(2.1) B(uv) = aIj axi ax dx

0 i,J=1,2

where aij = a are analytic functions on 0 satisfying the standard
Ij i..

ellipticity condition

(2.2) a1  kT 'r> 0  t=i**

IJ=1,2

Further, let

(2.3) F1 (v) = fv dxtdx2
0

where f is an analytic function on 0g. = 1,...,M. Let w be continuous

on D- U r-, r 1-r (t ) c r  and analytic on r D will be
riED

called the Dirichlet boundary.

Finally, let X = r0 -D be the Neumann boundary and let g be defined

on X and analytic on every r I * M, with

(2.4) F2 (v) E f g v ds.

r Ie rI

The exact solution of our model problem is defined in the usual way: find

us oH 1 (0), u0 - wi on D such that
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(2.5) B(uo,v) = (Fl+F 2 )(v)

for all vE0 H = {veH1 (0), v = 0 on D}. If D Is empty, then the usual

solvability condition for F +F 2  has to be satisfied. By IullE - (u,u))1/2

we denote the energy norm of u. It is equivalent to the H (0) seminorm

(and to the H1 (0) norm on OH 1(0)). The most important cases are when aij

are constant on every QV, t = 1, .-,M.

A similar formulation holds for the elasticity problem. Here, u = (Ul,U 2

and

(2.6) B(u,v) = btjklcij(u)ckl (v))dx1dx2
C1 i,J,k,1=1,2

1 auj
C i (u) U + "- iJ

with the standard assumptions about b j and the functional F. The

assumptions about the piecewise analyticity are analogously formulated as

before. Here the boundary conditions can be more general, combining traction

components and displacements on particular rj.

In the case of an Isotropic material, the bilinear form is

(2.7) B(u,v) = -. f[ c uc j (v ) + V (div u div v) dx dx2.

0l i,J=1,2

Here, P is the Poisson ratio, O<v<- and E is the Young's modulus
2

of elasticity. The form degenerates for P +!but regularity of the

solution is preserved. A similar degeneration with preservation of the

regularity properties also occurs for general anisotropic materials (see [14],

[151, for eg.).

The behavior of the solution Is essentially very similar in both the

scalar case and the elasticity problem. The solution u0
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a) is analytic in 0 - U A(j), j = 1,-..,m , J M
1,~J

b) has a special singular behavior in the neighborhood of every Ai)
I

The behavior of the solution is best understood when the operator in our

problem is the Laplacian. In this case, near a vertex, we have

J S N
(2.8) U0 = E E cj. oj(G)r+ gr+u'

J=l s=O m=O

Here, (r,e) are local polar coordinates at the corner point under considera-

tion. The decomposition (2.8) is such that the remainder u0  is smoother

than the terms in the sum. The functions 0 Jsm are smooth (in our case

piecewise analytic). We have S = 0 except for special cases, when S = 1

is possible. N may be 0 or positive. For eg., N*0 in the cases when

a are nonconstant or r () are curved. For details we refer to (161. The
ii e

norm of u0 in (2.8) depends on the geometry and diverges to w when the

geometry converges to certain exceptional cases. The coefficients c sm are

related to the stress intensity factors. They can be global, depending on

uO , or local, depending only on the input data at the vertex.

In the case of the elasticity equations, the results are similar,

although not as detailed. The coefficients a in (2.8) can now be complex

and the conditions for S and H are not completely characterized.

There is often a practical need in actual problems to know the values of

a and the functions *ism, In [ 17] a general, adaptive, completely robust

algorithm for determining these coefficients and functions is given. As an

example of the complicated structure of these coefficients, we show the two-

material (anisotropic) case when zero displacements are prescribed at the

boundary (Fig.2.1).
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ADHESV

GRAPHITE

0

Fig.2.I the scheme of the two material domain.

The two materials are typical anisotropic ones used in engineering.

Graphite is highly anisotropic while adhesive is only slightly anisotropic.

Figs. 2.2 show the first six (or seven) a with smallest real part as

functions of the angle (the accuracy is 10-5). Fig. 2a shows the real part

of a X If a, is complex, values are denoted by circles. Fig. 2b depicts

the imaginary part. For details see [171.

3!4

.. ... .

Fig. 2.2a) The real part of j. Fig.2.2b) The imaginary pert of .

There is a vast literature devoted to the analysis of the decomposition

(2.8). We mention here (181, (19], (201, (21] and references given therein.

The above decomposition is valid when the input data are smooth but not

necessarily analytic. Another characterization of the regularity, given in

terms of countably normed spaces, was analyzed in [22, (231, (241, (25]. For
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example, it is shown that for the exact solution uO ,

(2.9) ID'u0 C r Ia+ -1] -  dI ic! O< < 1

holds for all a- l. Here C and d are independent of a. In the above

references, the complete characterization of these normed spaces together with

corresponding trace spaces and extensions is analyzed.

In 3 dirensions, the situation is more complicated due to the presence of

both edge and vertex singularities. As a result, the regularity may be

different along different directions, leading to the use of anisotropic

spaces.

Let us finally point out that the regularity of the solution of our model

problem may also be characterized in terms of standard Sobolev (or Besov)

spaces. Accordingly, if a is the minimum over ali vertices A of the

exponents aj (or Re(a if aji are complex) in (2.8), then we have

(2.10) ueHk(Q) V k<1+a.

Most classical finite element error estimates rely on regularity results

of the form (2.10).

3. The h-, p- and h-p version of the finite element method.

To illustrate the basic results, we restrict ourself to very special

cases, although the available results are completely general.

Let us consider the case when Q is an L-shaped domain, as shown in

Fig. 3. 1.



-B A

0 E

x y

Fig.3.1 The scheme of the L-shaped domain.

We consider the elasticity problem (2.7) with f = 0 and traction

boundary conditions such that

(3.1) U1 = rA[(K-Q(A+1)) cos Ae-A cos (A-2)G]

u = r'[ (K+Q(A+1)) sin AG+A sin (A-2)e]u2 2G

where

x = 3 - 4P,

G = E/2(I+u)

Q A sin (A-I)w/2
sin (A+l)w/2

with v 0.3, A - 0.544484, w = x. The sides OE, and OA (see Fig.3.1) are
2

traction free. Solution (3.1) is one term in the decomposition mentioned in

Section 2.

As usual, we introduce a mesh to partition 0. For simplicity, we first

consider the case of a uniform partition, characterized by the parameter h

(see Fig.3.2).
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Fig.3.2 The uniform mesh.

The finite element spaces VcH 1(0) will consist of continuous plecewise

polynomials of degree p on the squares of the mesh. The exact set of

polynomials used over each square consists of either Qp , the set of

polynomials of degree p separately in each variable, or Q', the minimal set
p

containing polynomials of total degree p. See eg. [261 for details. The

finite element solution uFE is then defined as usual by

B(u,v) - F(v) VvEV

with the error satisfying

1110 -UFEIIE - min m Uo-W" E .

The space V (and hence also uFE) is characterized by two parameters, p

and h, so that V = V(p,h). By N(p,h) we denote the dimension (i.e. the

number of degrees of freedom) of V(p,h). In order to obtain a desired

accuracy for our approximation, we use an extension rocedure, I.e. a

procedure to increase the dimension N(p,h). This can be of three types:

a) h-version. Here p is fixed, usually at a low level (eg. 1 or 2) and

we achieve the desired accuracy by taking h-iO.

b) y-version. In this case h is fixed, i.e. the same mesh is used and

p--+a, i.e. the accuracy Is achieved by increasing p.

10



c) h-P version. Here h and p are simultaneously changed (either

uniformly or selectively).

In general, we will be interested in the relative error IlelIER

112u0 --UFEIIE/o0IE . We present some theorems for our approximation which are

the special cases of those proven in 1271, [28].

Theorem 3.1 [27]

(3.2) L'.Ii _ UFEIIE < Chmin(, p) p-2A

where C is a constant independent of h and p.

The above theorem holds for both choices Q and Q'. In 2 dimensions,
p p

N = h-2p2  so that to obtain the optimal asymptotic rate minimizing N(p,h), we

choose h = 1, 1.-e. the p-version. (Of course, N does not completely measure

the needed work. Moreover, the accuracy measured in the energy norm is not

necessarily the accuracy we are seeking in practice). Figs. 3.3a and 3.3b

show the errors for the h- and p- versions respectively with elements of Qp

type.

40

F' P&4A.so --0544..

7
61

MESH SZE h

Fig. 3.3a The error for the h-version

11



40

30 1

20 ha4-

1 5

t 9  <x&LI '

7
61 12 3 4 5 6 78

DEGREE p OF ELEMENTS

Fig.3.3b The error for the p-version

The figures are drawn in the log log scale. They show that (3.2) correctly

characterizes the asymptotic behavior which is defined by the slope in the

figure.

Let us now consider a non-uniform geometric mesh with n layers and with

ratio 0.15. This is shown in Fig.3.4 for n = 2.

C

B 8

A n=2

DETALL

I IA

Fig.3.4 The geometric mesh

The shape functions are now the usual mapped polynomials using blending

mapping techniques for the circular sides. For details, see eg. (291.

In Fig. 3.5 we show the error for different numbers of layers and the

(uniform) degree p in the log log scale

12



40

2 0 2000

Number of Degrees of Freedom

Fig. 3.5 The error Uielu as a function of n and p.

Flg. 3.6 shows the error behavior in log UeIIER×x 1/  for selected

combinations of n and p.

E 10 , x1a nx

. 40  (1)npr)

E eopd@rW othe element

aa

0 .4

( 02 - ------ 1--

240 80100 200 400 8W01000 2000

Number of Degrees of Freedom
Fig. 3.6 The error leltER for selected combintions o (n,p).

We see that AER r Ce hv . EstIltes oR this type have been analyed

in [301, [311, [321, employing the smoothness characterization of (2.9). We

have

Theorem 3.2 [321. Let the mesh with n layers be considered and let

40 -01 w i

Then~2 ifume of saisie (.9, e av

43

Inacul opuaios tereehigreure y h hpvesoni

(013



a disadvantage due to increased human cost. Consequently, the usual practice

while employing p and h-p versions codes is to use a fixed, strongly

refined mesh and then increase p (i.e. the p-version). The mesh design

should be such that the desired accuracy will, as far as possible, be achieved

for the optimal pair (n,p). In [33], (34] an attempt to design an expert

system for such selection is presented.

Theorem 3. 1 is a special case of the following, more general theorem,

proved in [271.

Theorem 3.31[27] Assume that u0 has the form (2.8) with a = min aT Then

" hmin( ' p  )

' u0-u II5 Cg(hP) m, .hah p- g(h,p,S) - max (IloghlS, IlogpI S

Theorems 3.1 and 3.3 show the interesting fact that the convergence rate

of the p-version is twice that of the h-version when a uniform or (more

generally) a quasiuniform mesh is used. This fact was proved in [11] for the

p-version (see also (351).

In this connection, the following result from (271 is useful when _I0 is

only known to be in some Sobolev space as in (2.10).

Theorem 3.4 (27]. Let 0 eHk(Q), k>i. Then if the spaces V =

V(p,h) are based on a uniform (or quasiuniform) family of meshes,

(3.3) ll 0 - _UFE"E , ChHp (kk( )

where p - min (p,k-1) and C is independent of u0 ,h,p.

Theorem 3.4 improves the classical estimate

IIo !-_ lE C(p)h NOI H k()

for the h-version by explicitly showing how the constant C(p) decreases when

p is increased. Note that theorem 3.3 is a more refined result for solutions

14



of the form (2.8), since using (2.10) with theorem 3.4 will not yield the

observed doubling in the rate of convergence of the p-version.

The p-version has been analyzed for 3-dimensional problems in (36). [37).

Various problems arising, for example, from the theory of plates and

shells may be described by elliptic equations of order 2m where m> 1. For

such problems, if the elements used are conforming piecewise polynomials, then

they must have m-i continuous derivatives over 6. Approximation results

for the p-version using such Cm-i elements have been established in [381,

where it is shown that once again, due to the presence of ra type singulari-

ties in the solution, one obtains twice the rate of convergence of the

h-version. The case m=2 was originally discussed in [39] where some

computational results using C elements are presented. Theorems for the h-p

version for equations of order 2m are given in (40).

For second order problems, the results in theorems 3.1-3.4 hold not only

for square or triangular elements but also for curvilinear elements having

some uniformity properties with respect to their mapping onto standard

elements. For details, see eg. [311.

As we have seen, the presence of singularities significantly decreases

the rate of convergence. In addition, the p-version is influenced by the

"pollution" problem [41]. By this we mean the effect of an error in one

element (usually due to a singularity present In the true solution over that

element) permeating into adjacent elements (where the exact solution is

regular). The pollution problem is more serious if the stresses are of

interest. It may be overcome by using refined meshes (a few layers) In the

area of singularity. Another approach to deal with this problem is to use

properly mapped shape functions. For details, see (421.

So far, we have assumed in our model problem that the Dirichlet boundary

set is empty. The theorems we mentioned above are valid without changes when

15



= 0 on D i.e. the Dirichlet conditions are homogeneous. Then we simply

use 0V(p,h) - V(ph) n H (0) instead of V(p,h).

In the case of nonhomogenous essential boundary conditions, we have to

approximate w by wFE so that iFE Is in the trace space of the finite

element space V(p,h). This is done by a projection in the Hr(F ) norm,

O<,yI. The cases y - 1,1/2 have been analyzed in (281, (431 and the

general case in [44]. The results show that for smooth w, the optimal rate

of convergence is achieved when 1/2:5y:51. More precisely, Theorem 3.4

holds for 1/2<y<1 and wcH5 (F i), s>1. For w unsmooth, e.g.
1 3

weHS(lw), 1<s<-4, the optimal rate of convergence using the projection
1

approach has been established only for 7 - . Numerical results are given in2

[301 and (44]. This problem does not occur with the h-p version when W is

singular in the neighborhood of the vertices. In [451, we have analyzed a

class of constrained boundary conditions which are important in practice in

structural mechanics.

So far we have only mentioned the solution of elliptic problems. The p

and h-p version can also be used for other types of problems. For example,

in (46], [471 we analyze the method for solving parabolic equations when the

h-p version is used in both the time and space variables.

4. The problem of optimal meshes and adaptive approaches.

In the previous section, Fig. 3.3a showed the convergence rate for the

h-version using a uniform mesh. This rate may be improved by using better

meshes in certain cases.

The problem of optimal meshes for the h- and h-p versions was studied in

detail for 1 dimension in [48] and for 2 dimensions in [491. Let us mention

some one dimensional results.

We consider the simple model problem

1



-u= f, u(O) = u(M) = 0

1

with the exact solution u(x) x M - x, &> 1. Let x, denote the mesh

points. For the h-version, the radical mesh xi  --(i] I1,",m is

optimal.

1

2p~ +~

lia m lluUUNE = C(a,p)J l
--

2

where

a-(a)Istn wal r(p-a+1)
C(C, p) =

O ) 4pV2P+i r(p+1/2)

Theorem 4.1 shows that for the h-version, the best possible rate of

convergence is o(hP), which is aliebraic, and not exponential (as for the h-p

version).

For the h-p version, the optimal mesh is a geometric one with ratio q,
m- I

x, = q , O<q< 1, 1 - 1,2,...,m and the optimal p-distribution Is

linear, pi = [sil + 1 where [a] denotes the Integral part of a and

P1 is the degree of the element (x1_,xI). s will be called the sloe.

In the case of uniform p, we use p = (sal + 1. The optimality is

understood in the sense that the error using the optimal mesh and optimal
,/(&-1/2)N

degree distribution has the same exponential rate qopt as the best

achievable rate among all mesh and p distributions with the same number of

degrees of freedom N.

Theorem 4.2. We have qopt , (v2-1)2 * 0.17 and sopt - 2&-1. Then

u0 -UFE E opt

17



In the case of uniform degree distribution we have

Theorem 4.3. opt (4-1) Sopt - 2-i and

uO~~~~ -E1:5C (a)qV7z--/2 N N -a/2

E opt

= min (2a- 1.a).

We have seen that for p uniform, the radical mesh is optimal. Hence we can

ask about the envelope of optimal radical meshes. Then the radical meshes
-4/e 2

tend to a geometric one with ratio q = e / 0.54 and

s = 4(=-1/2)/e2 z 0.54(=-1/2). These, together with many more detailed

results as well as numerical experimentation are given in (48].

In two dimensions, the situation is more complicated. Nevertheless, the

linear distribution of p and geometric mesh are once again optimal. The

estimates will be of the type e in contrast to e in one dimension.

For circular elements and optimal choice of the degrees of elements in

different directions, we can achieve the rate e-TV9 too. For details we

refer to (49].

The above results indicate that the geometric mesh with q w 0. 15 is the

right mesh for practical use. It is preferable to over-refine the mesh

slightly. The selection of the number of layers can be made in an expert

system mode or adaptively. Adaptive approaches were addressed in [49], (50).

Let us mention that the codes FIESTA and STRIPE have some adaptive features

with shape functions being selected in an anisotropic way. In PROBE, the

determination of the p-distribution is done at present by the user.

5. The p and h-p version for integral equations and mixed methods.

The theorem in Section 3 (and 4) were based on approximation theory

results In the H1 norm. We can proceed analogously for cases where we have a
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coercive bilinear form over some other space H for which corresponding

regularity and p- and h-p version approximation results are known. In [51]

this procedure Is extended to the boundary element method. Consider for

example the model problem from Section 2, of Laplace's equation on a polygonal

domain when both the Dirichlet and Neumann sets are present. Then the problem

can be formulated on rn (see [51]) as a system of integral equations with the

unknowns being given by the pairs I L I where rexHr ED This
(10 2 8n rJ 2 '1

problem may be put in the form B(uv) - F(v). It satisfies a Carding

inequality which is sufficient to obtain an optimal rate of convergence for

the Galerkin approximation. In [52], the h and h-p versions were analyzed and

it was shown that the rate of convergence of the p-version Is twice as high as

that for the h-version (with uniform mesh), similar to the cases discussed

earlier. We can also obtain an exponential rate of.-convergence for the h-p

version with a properly chosen (geometric) mesh and degrees analogously

selected as in the previous sections. For details, see (53], (54], [55]. For

adaptive procedures in the h-p version for integral equations, we refer to

[56].

The problems discussed so far have been sable (in the sense that they

are coercive or a Garding inequality holds). For mixed methods, one must

first establish the stability of the approximate subspaces used, via an

Inf-sup condition. The stability of the p-version in the context of certain

mixed methods for Stokes' problem has been discussed in [57], [58]. (See also

spectral method references). In 159], the Raviart-Thomas and the Brezzi-

Douglas-Marini spaces for the mixed formulation of linear elliptic problems

have been shown to be stable and possess optimal convergence properties in

terms of the h-p extension using quasiunifors meshes. The p-extension of

Raviart-Thomas elements for quasilinear problem i analyzed in [601.
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6. The h-p version and mathematical modeling.

Let us consider as a model problem the problem of plate bending. This

problem is, in fact, a 3 dimensional problem over a "thin" domain

3
Q- x (-t/2, t/2)c R. Two dimensional formulations such as Kirchhoff or

Relssner-Mindlin models (among others) are dimensionally reduced formulations

of this problem. These formulations generally are asymptotically identical

for t--O, but yield different results for t> O. The solutions of these 2

dimensional models have to be understood as approximations of the 3 dimen-

sional formulation. The error depends on the type of input data (for eg.,

clamped or simply supported plate), thickness and the aim of the computation.

The h-p version gives a natural tool which leads to a hierarchical set of

formulations. Denoting the displacements by u , (UlU 2 ,u 3 ), the dimensional

reduction can be understood as a projection on the space of solutions of the

form

1li'2,3) = u IJx1 ,x2 )x3
2 -1

J-1

s 2

(6.1) u2(x1,x2 x3) = E J)(xl,2)x32j-1

J-1

u(xx 2,x3) - E J)XlX 2 ) 2 J

j-0

For example if P - 0 (P - Poisson ratio) then the choice s- 8 2 - 1, s 3  0

leads to the Reissner-Mindlln model. For P>0 one has to take s3 - 1. For

more about dimensional reduction we refer to [61] and references therein. The

error of the reduced formulations depends on various factors. For example

(see [621). for the simply (soft) supported uniformly loaded Reissner-Mindlin

plate with angle 300, side length 1 and thickness t - 0o1, 0.01, the errors
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in the energy norm are 4.34% and 15.41 respectively. The form (6.1) can be

understood as the p-version with the polynomial degrees in the x3 direction

being different from those in x1 ,x2. From this point of view, the h-p

version is a natural tool for deriving plate models and assessing their error

(see next section). The program PROBE has these types of features for appli-

cation to plates and shells, as well as for transitions where s is changed

in various parts of the domain. As shown in [621 and [63], the various

boundary conditions (hard, soft) have a significant influence on the solution.

For more, we also refer to [64].

7. Extraction techniques.

Usually in Qomputational practice, the solution u of our variational

problem is only a tool to get the primary quantity of interest. For example,

the goal of the computation may be to find the stresses at a point, or the

maximal stress (e.g. Mises equivalent stress) over a region, or the

resultants (reactions, moments) in the plates and shells, stress intensity

factors, etc. Mathematically, we are interested in evaluating the values of

certain functionals. This can be done in a trivial way (for example, by

differentiating the finite element solution uFE) or using more sophisticated

approaches which lead to more accurate results (with accuracy being of the

order of the error in the energy, rather than the energy norm). Such

techniques, called extraction techniques, were addressed, for e.g., in [651

and applied in various important contexts (see [661, [671).

As an example of an extraction technique, we present computations for the

stress intensity factors for the model problem introduced in Section 3, but

with the exact solution consisting of two terms of the expansion, A1 - 0.54448

and A2 = 0.90853. We have selected the intensity factors a 1 (mode 1)
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and a2 = 2 (mode 2). Fig.7.1 shows the error of a and 42 In the scale

log e x N1/3 for the two layer mesh as well as the error in the strain energy

(not energy norm).

POLYNOMIAL DEGREE

I 234 5 6 7 8
50 ...

~I

LU

n-

10' STRAIN ENERGY

Cr

2.0 4.0 6.0 to 10.0 12.0

N'13

Fig.7.1 Convergence of the stress intensity factors computed by the
extraction technique.

We see that, in fact, the accuracy in the stress intensity factors is of

the same order as that In the strain energy and that for high p, the second

mode is more accurate than the strain energy (see [65] for an analysis). As

we see, the error does not behave monotonically. (The computations above were

performed by PROBE, which offers this extraction technique feature). An

essential prerequisite of the extraction here is the knowledge of the

coefficients a and *?) In (2.8) (and the adjoint of *(9)). As shown in

Section 2, these are available. For the extraction of other data of interest,

we refer, for e.g., to [671. Although they are not computationally trivial,

extraction techniques can potentially save a large amount of computer time

(when included as a standard feature in a program), especially in 3 dimen-

sions, where an error of order iX in stain enerU is easy to obtain but an

error of order 1% In the energy norm is very difficult to achieve.
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8. A-posteriori estimates.

An essential aspect of the finite element method is quality control

of the computed results of interest. The p-version (on properly designed

meshes) gives an effective tool for this, because it computes extensions

without changing the mesh (and saves precious user time). The computed

sequence of the value of interest can be analyzed by various extrapolation

approaches (or simply by assessing the changes with p visually). If the

data is monotonic, as in the case of the energy, the extrapolation technique

is very effective.

Table 8.1 shows the approximate relative -nergy norm error estimates by

the program PROBE for the model problem mentioned in Section 3, with n = 2

layers.

Table 8.1 The estimated and true energy norm errors.

Estimated True Estimated True

p N Error Error p N Error Error

1 41 25.41 25.41 5 497 1.41 1.47

2 119 8.45 8.45 6 695 1.15 1.32

3 209 3.91 3.93 7 729 0.89 0.98

4 335 2.09 2.13 8 1199 0.74 0.85

The estimates are computed by using extrapolation based on the formula

2 = CN- E
(8.1I) IeIEC E zx-E

where EEX (respectively EFE) is the exact (respectively computed) finite

element energy. (Note that there are 3 unknowns In (8.1):C,P, EX.). We

compute EEx out of three successive values. The final value of EEX accepted
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is then used for all p. When the error curve is concave (as we would like to

achieve by the proper mesh and an exponential rate of convergence), then the

estimated errors are upper bounds. In any case, as Table 8.1 shows, the error

estimate is of high quality. We can and should use other quality controls,

e.g. various equilibrium checks, etc. (see e.g. [681). PROBE has various such

features. Essentially, one has to compute the values of Interest more

accurately than needed for engineering purposes because of quality control

reasons.

If the values are not monotonic than it is easiest to present the entire

sequence to the user. As an example, we show In Fig.8.1 the 3 dimensional

analysis of a splice and depict the maximal principle stress in the region.

The standard h-version computation results are also given. The data are

taken from (69].

It is observed that one may decide by inspection that the p-version has

converged satisfactorily. A similar deduction is not possible with the

h-version.

54.0W0

52.00 V fSW 5

s -25%
50.000 3

46.00 hvraI

46.000

100 400 1.000 4.000 10.000 13.M0

N(Gioba DOF)

Fig. 8.1 The accuracy of the maximal principal stresses In a splice
computation
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Similar principles can be used in the error assessment of the modeling

mentioned in Section 6 and extraction techniques mentioned in Section 7.

9. Robustness and problems involving "locking".

A robust method is one which performs uniformly well for a broad class

of input data. Consider for example the elastL,.Ly problem as defined in

Section 2. When P--*1/2, the form degenerates (although the solution stays

smooth, see Section 2) and we have div u--O. It is well known that the

h-version of the finite element method for low degree p performs very

poorly, due to the phenomenon called "locking".

There are various types of locking. The above mentioned is called

Poisson locking and will be briefly discussed here. Essentially, when

v--+1/2, problems arise in a) the convergence in the energy norm and b)

computation of the pressure (0ax + y.

We have to distinguish between the case of straight and curved

elements. It has been shown in [70] that the rate of convergence in the

energy norm of the p-version with straight triangles is not influenced by

P--+1/2. In [71], it has been shown that the h-version with straight

triangles does not show locking when p Z 4 . The general case Is analyzed in

[72], (73]. Theorems 9.1 and 9.2 are specialized versions of the more general

results obtained in these references.

Theorem 9.1 (3.3) holds for straight-sided triangles and parallelograms

uniformly in u provided that p>P0  where Po - 4 for triangles, 3 for

Q elements and 5 for Q elements.

The above theorem shows that with straight triangles and parallelograms,

no locking occurs for p>po both with the h and the p-version. For

curvilinear elements, we have for the p-version:
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Theorem 9.2. Let u0 HHk(fQ), k> 1. Then the following estimate holds for

the p-version uniformly in v,

11!40- -uFEI11E  <5 C p-s) k-l11LluoII H kcn)

where s2_O depends upon the mappings of the curvilinear elements onto the

standard elements, provided these mappings are rational.

A related theorem for the case when the mappings are analytic may be

found in [721, [73).

As a simple illustration, we show the relative error in the energy norm

for various straight and curvilinear choices of a single element for v = 0.3

and v = 0.5 - 10-10, where a Q' type element is used. For a detailed
p

analysis and numerical examples, we refer to (72], [73].
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X- NUMBER OF DEGREES OF FREEDOM

Fg.9.1 Error behavior for curved elements for v = 0.3 and v = 0.5-10 - 0 .

The second problem is the pressure recovery. In [741, (751, It is shown

that the stress components x-wy' Xy are accurately computable directly

from the solution (by Hooke's Law) but the directly computed pressure is

unusable. Nevertheless, the pressure can be accurately recovered by a post-

processing technique based on the observation that It is a harmonic function

and that uFE Is accurate in the energy norm.

26



A similar behavior occurs for other cases of material which can be

associated with nearly degenerate bilinear forms (see (14)) in two and

three dimensions. The h-p version is also very robust in relation to the

shear locking that occurs in plate theory.

10. Implementational aspects.

In contrast to the h-version, the p-version needs much more computational

work to construct the local stiffness matrices and load vectors. Moreover, it

leads to matrices which are less sparse. On the other hand, the local

stiffness matrix computation is completely parallel (and for uniform p is

well balanced) which can obviously be implemented by parallel computers.

For complex geometries, curvilinear elements with relatively large

distortion cannot be avoided. This problem is overcome in the p-version by

using quadrature rules with the number of quadrature points depending on the

distortion.

The system of equations for the FEX solution Is less sparse for high p

than for low p. Hence the solution is more expensive for high p. Never-

theless, the ratio of the computational work to the accuracy obtained is more

favorable for the p-version (this is also true for engineering accuracy). For

a detailed analysis we refer to [761, (77].

Iterative method techniques like the conjugate gradient method can be

very favorably influenced by the correct selection of the shape functions.

For various aspects of the influence of the shape functions on the Iterative

process, we refer to [781. In [791 we have shown that in 2 dimensions, the

preconditioned conjugate gradient method (preconditioning by p I computa-

tion) requires O(log p) steps asymptotically when the shape functions are

properly chosen.
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In [80], detailed experimentation and analysis of the factors influencing

effectiveness and parallelization on Alliant computers are presented. It is

shown that the speed-up is at least 90%.

In general, mesh generation, especially in 3 dimensions, is a difficult

task. Presently, a mesh generator geared to the needs of the p-version is not

available and a PATRAN interface is usually used.

For experimentation with mesh refinement of the h-p version on tensor

product meshes in two dimensions, we refer to [811.

11. Engineering experience and practice.

In the previous section, we discussed various theoretical aspects of the

h-p version. A large amount of engineering and industrial experience with

the method has been gained in connection with the use of commercial programs

FIESTA, PROBE and research program STRIPE. For some articles, we refer to

[821 and references therein. See also [83).
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The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

o To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

o To help bridge gaps between computational directions in engineering,
physics, etc., and those In the mathematical community.

" To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

" To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

" To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. Babu3ka, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.


